本文介绍的内容主要聚焦Google 的一项最新工作:改变基于 GEMM 实现的 CNN底层算法提出的新方法。通用矩阵乘法(General Matrix Multiply, GEMM)是广泛用于线性代数、机器学习、统计学等各个领域的常见底层算法,其实现了基本的矩阵与矩阵相乘的功能,因此算法效率直接决定了所有上层模型性能,目前主流的卷积算法都是基于GEMM来实现的。来自谷歌的Peter Vajda在ECV2019中提出了一种全新的间接卷积算法,用于改进GEMM在实现卷积操作时存在的一些缺点,进而提升计算效率。 |